
Installation and operation manual
PCIe-CAN-01 / PCIe-CAN-02

Table of Contents
Compliance information..3

FCC Compliance...3
EN 55022 Class A Warning ..3
CE declaration of conformity..3
Safety note...3

Hardware description and installation..4
CAN connector pinout...5

Driver Installation..6
Windows..6
Linux...9

CAN bus wiring ..10
Development libraries..13

C language...13
Functions..13

EICanOpen...13
EICanClose..14
EICanRecv...14
EICanXmit...14
EICanReadCardInfo...15

Structures..15
CanFrame...15
CanErrorInfo..16
CanCardInfo...17

Error codes..17
C++ language..19

Class Methods...19
EIcan::EIcan...19
Eican::~EIcan...19
EIcan::Open...19
EIcan::Close...19
EIcan::Recv..20
EIcan::Xmit..20
EIcan::ReadCardInfo...20

Compliance information

FCC Compliance

NOTE: This equipment has been tested and found to comply with the limits for a Class A digital device,
pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection
against harmful interference when the equipment is operated in a commercial environment. This
equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in
accordance with the instruction manual, may cause harmful interference to radio communications.
Operation of this equipment in a residential area is likely to cause harmful interference in which case
the user will be required to correct the interference at his own expense.

EN 55022 Class A Warning

This is a Class A product. In a domestic environment this product may cause radio interference in
which case the user may be required to take adequate measures.

CE declaration of conformity

Embedded Intelligence, Inc declare under our sole responsibility that the products; PCIe-CAN-01 and
PCIe-CAN-02 to which this declaration relates are in conformity with the following standard(s) or
other normative documents

- EU directive 2004/108/EC

May 19, 2014

Stephen Glow – President Embedded Intelligence, Inc.

Safety note

This card is intended for use in UL Listed computers or Equivalent, that have instructions detailing
installation.

Hardware description and installation
The PCIe-CAN-02 is a dual channel CAN interface card for the PCI express bus. The PCIe-CAN-01 is
a single channel version sized to fit in a half hight PCI express chassis. Full sized brackets are also
provided for the PCIe-CAN-01, so it can be used in either a full height, or half height PCI express
chassis.

On the dual channel card, the bottom CAN connector (i.e. the one located closest to the motherboard
when the card is installed) is port 1. The upper connector is CAN port 2.

The card includes 120 Ohm termination resistors on board. The jumper adjacent to each CAN port
connector is used to enable these termination resistors. When the jumper is in place, the CAN bus is
locally terminated. When the jumper is removed the on board termination resistor is not used. Proper
termination of the CAN bus is very important for the proper functioning of the network. For more
details, see the section later in the document on proper CAN bus wiring.

The card uses a single lane PCI express connector to interface with the host computer. The card can be
installed in any PCI express slot on the host PC, both single lane slots and multi-lane slots will work
equally well.

To install the card in the host PC, power down the PC and insert the card into any free PCI express slot.
We recommend that a screw be used to secure the bracket to the host chassis.

CAN connector pinout

The CAN interface connector used on the card is a male DB-9 connector using standard CAN bus
wiring:

Pin Signal

1 No connection

2 CAN Low

3 CAN Ground

4 No connection

5 No connection

6 CAN Ground

7 CAN High

8 No connection

9 No connection

Driver Installation

Windows

The windows driver for the PCIe-CAN card supports Windows XP and later version of the operating
system on both 32-bit and 64-bit systems.

To install the driver, first download the most recent driver file from the Embedded Intelligence web site
(http://embeddedintelligence.com/download.html). The driver is distributed as a zip file and must be
extracted before it can be installed. Extract the file into a folder on your desktop or other location
where it can be easily found.

To install the driver, restart the PC with the CAN card installed. You must have administrator
privileges to update drivers in windows, to install the driver log onto the PC using an account which
has these privileges.

When the PC is first started with the CAN card installed, it may pop up a 'new hardware found' wizard.
The driver can be installed through this wizard by selecting the folder to which the driver files were
extracted. This wizard does not always show up for all version of windows, so we will detail a more
reliable way to install the driver using the device manager. This method can also be used to upgrade an
existing driver.

There are several ways to start the device manager program on windows. One way is to press the 'Start'
button at the bottom of the screen, and enter the following command in the text field at the bottom of
the startup list:

mmc devmgmt.msc

Alternately, the device manager can be found in the control panel listed under the 'Hardware and
Sound' category.

http://embeddedintelligence.com/download.html

The device manager gives a list of all the hardware devices available in the system. For a new install,
the CAN card will show up under “other devices” listed as “PCI Device”. When upgrading the driver,
the card will show up under the “CAN cards” category.

Right click on the CAN card device, and select the option to “Update driver software”. This should
open a dialog box like the following:

Choose “Browse my computer for driver software”.

Locate the folder containing the driver software which was previously downloaded and extracted.

Clicking “OK” should start the driver installation. Windows will then confirm whether you want to
install this driver. To install the driver, select “Install”.

Linux

The Linux driver is distributed in source code format for easier installation on a variety of different
Linux distributions and kernel versions.

To install the driver, first download the driver files from the downloads section of the Embedded
Intelligence web site:

http://embeddedintelligence.com/download.html

To decompress the archive file, use the following command (substituting the proper archive file name if
necessary):

tar xzf eican-1.00.0.tgz

This will create a new directory containing the driver source files. Enter that directory and build the
driver using the following command:

make

This should compile the driver. On success, the driver file (named eican.ko) will be created in the
working directory.

To insert the driver into the running kernel, execute the following command (which requires super user
privileges):

sudo insmod eican.ko

To install the driver in the appropriate kernel directory so it can be automatically loaded at startup, use
the following command (which also requires super user privileges):

make install

When the driver is properly installed and detects a CAN card in the system, it will create device files
named /dev/eican00, /dev/eican01, etc. There will be one such file created for each CAN port, so
single channel cards will create one file, dual channel cards will create two files, etc.

Normally, the device files will be created with root ownership. On Linux distributions that support the
udev device manager this can be changed by creating a udev rule file. The file should be named

10-cancard.rules

and placed in the udev rules directory in the system. For Debian based distributions this folder is

/etc/udev/rules.d/

The rules file should contain the following line:

SUBSYSTEM=="cancard", OWNER="someuser", GROUP="somegroup", MODE="0666"

Change the someuser and somegroup strings to valid user and group names in the system.

Please see the Linux udev documentation for more information on writing udev rules.

There are many different Linux distributions in the wild. Please don't hesitate to contact Embedded
Intelligence support if you encounter difficulties building or installing the Linux driver on your system.

http://embeddedintelligence.com/download.html

CAN bus wiring
Laying out a system that uses the CAN bus requires a certain amount of care. When properly designed,
a CAN network will provide a highly reliable communications link. If insufficient care is taken when
designing the network layout, significant error rates can result.

CAN is a shared bus style network. All nodes on the network are directly connected to the same set of
bus wires. The CAN bus uses two signal wires named CAN high and CAN low. Networks will often
function with only those two signal wires shared between the nodes on the network, but it's wise to also
connect a common ground wire between all the nodes on the network. This avoids large ground shifts
between nodes which could exceed the common mode voltage limitations of the CAN transceivers.

When a CAN network is designed, it should take the form of a single bus line with nodes hanging off
of it. The length of the stub from the main bus to the CAN node should be as small as possible for best
results. Termination resistors should be placed at both ends of the main CAN bus with values that
match the impedance of the network cable, 120 Ohm is the value typically used. If the PCIe-CAN
card is being used at one end of the CAN network, then it's internal termination resistor may be used by
inserting the jumper next to the CAN connector. If the card is not at the end of the bus, then it's
internal termination resistor should be disabled by removing the jumper.

Messages are transmitted on the CAN bus as a series of bits. 0 bits (called dominate bits in CAN
terminology) are signaled by applying a differential voltage to the CAN high and low bus lines. 1 bits
(called recessive bits in CAN) are signaled by not driving the bus and allowing the terminating resistors
to reduce the differential voltage to zero.

When a node on the CAN network needs to transmit a message, it first waits for the bus to be idle, then
starts transmitting it's message after a brief delay. It's often the case that multiple nodes will attempt to
transmit a message at exactly the same time. As long as all nodes transmit the same bit value at the
same time, there will be no conflict. As soon as one node transmits a zero (dominate) bit while another
node transmit a one (recessive) bit, the dominate bit will be the value that is actually signaled on the
bus. This is a natural result of the way bits are signaled on the CAN bus. Dominate bits are signaled
by nodes actively driving the bus voltage, recessive bits are signaled by nodes releasing control the bus
lines. Each transmitting node also monitors the actual state of the bus, and if it detects a dominate bit
value at a time that it attempted to transmit a recessive bit value, then it immediately stops transmitting
it's message. This mechanism is called message arbitration, and is used to prioritize traffic on the CAN
network.

In order for message arbitration to work, all transmitting nodes must also monitor the CAN bus lines to
determine if the bits that they are sending are actually prevailing on the bus. This basic requirement of
CAN is the reason that CAN networks are limited to a maximum data rate of 1 Megabit / second, and
that the maximum length of the network is limited.

When a CAN node transmits a bit, that bit value needs to propagate through that node's local CAN
transceiver, along the entire length of the network through the transceiver of the farthest node on the
network, and all the way back before the end of the bit time. In fact, the transmitting node typically
samples the actual bus value at around 88% of the bit time, so this round trip delay needs to happen
within 88% of the bit period. This restricts both the maximum bit frequency of the CAN network, and
the maximum length of the bus.

The CAN in Automation group (http://www.can-cia.org/) recommends the following maximum
network lengths and stub lengths for different CAN bit rates. Stub lengths are the distance from the
main bus line to the individual CAN node.

http://www.can-cia.org/

Bit rate Max bus length Max stub length Max accumulated
stub length

1 Mbit/sec 25m 1.5m 7.5m

800 kbit/sec 50m 2.5m 12.5m

500 kbit/sec 100m 5.5m 27.5m

250 kbit/sec 250m 11m 55m

125 kbit/sec 500m 22m 110m

50 kbit/sec 1000m 55m 275m

20 kbit/sec 2500m 137.5m 687.5m

In addition to limiting bus length, bus termination is also very important. The bus termination resistors
perform two important functions in the CAN network; they speed up the transition from dominate to
recessive bit values, and they minimize reflected waves caused by impedance mismatches at the end of
the bus. CAN transceivers are designed to be used with 120 Ohm termination resistors on each end of
the cable, and thus for best results the CAN network cable should have a characteristic impedance of
120 Ohms.

CAN is a very reliable network technology when properly implemented. For best results, the following
guidelines are recommended when laying out a CAN bus:

• Use a single main bus line with nodes hanging off it via short stubs. Resist the temptation to
layout a CAN bus in a star or tree style configuration.

• Pick a network bit rate that's appropriate for the length of your CAN bus using the table above.
In fact, use the next lower bit rate if possible. Lower bit rates provide a lot of extra tolerance to
questionable termination or line layout.

• Don't forget to terminate both ends of the CAN network! This is probably the single most
common cause of network errors in CAN.

• Use cable designed for CAN with 120 Ohm characteristic impedance. CAT-5 has a
characteristic impedance of 100 Ohms which is not ideal for a CAN system.

Development libraries
Software interface libraries are provided in several different programming languages. These libraries
are designed to be very small, simple and easy to use.

To install the programming libraries, simply download the EICAN_API.zip file from the Embedded
Intelligence web site. This zip file contains folders for every supported operating system. Each OS
folder contains additional folders for each programming language supported.

C language

The C language interface is supported for all operating systems. The source code of the library consists
of a single header file named eican.h, and a single c language file named eican.c. The directory also
contains a very simple test program and the necessary project files to build the example.

The C language interface consists of a very small set of functions for opening/closing a port on the
CAN card, and reading/writing CAN messages. The functions are all designed to be thread safe, so it's
safe to send CAN messages from multiple threads of a multi-threaded program, or to read CAN
messages from one thread while writing from another.

Functions

void *EICanOpen(int port, int baud, int *error);

This function is used to open the CAN port. Before any other calls can be made which access this
CAN port, it must be successfully opened using this function.

port This parameter identifies the CAN port to open. CAN card ports are numbered
from 0, so systems with a single dual channel card would have CAN ports
numbered 0 and 1.

baud The bit rate at which to communicate on the CAN port. The value passed should
be one of the #defined values in the eican header file. Options are:

EICAN_BITRATE_1000000 1 Megabit / second

EICAN_BITRATE_800000 500 Kbits / second

EICAN_BITRATE_500000 250 Kbits / second

EICAN_BITRATE_250000 250 Kbits / second

EICAN_BITRATE_125000 120 Kbits / second

EICAN_BITRATE_100000 100 Kbits / second

EICAN_BITRATE_50000 50 Kbits / second

EICAN_BITRATE_20000 20 Kbits / second

error If an error occurs during the call, an error code will be returned in the integer
referenced by this pointer.

Return On success, a pointer to an internal data structure will be returned. This pointer
should be passed to subsequent function calls made on this port.

On failure, a NULL pointer is returned and the error parameter is used to return
an error code.

int EICanClose(void *local);

This function is used to close a CAN port when it is no longer needed. After closing the port, no
further calls can be made which access that port unless it is opened again through another call to
EICanOpen.

local The pointer which was previously returned from the EICanOpen function.
Once the port has been closed, this pointer is no longer valid and should not be
passed to any subsequent functions.

Return An error code is returned on failure, or zero on success.

int EICanRecv(void *local, CanFrame *frame, int32_t timeout);

Wait for a new message to be received on the open CAN port and return it.

local The pointer which was previously returned from the EICanOpen function.

frame A pointer to a CanFrame structure. If this function returns success, the received
CAN frame will be stored in the structure referenced by this pointer.

timeout The maximum amount of time to wait for a message before returning an error.
The timeout is specified in millisecond units.

Return An error code is returned on failure, or zero on success.

int EICanXmit(void *local, CanFrame *frame, int32_t timeout);

Transmit a CAN message over the open CAN port. This function adds the passed message to the cards
transmit queue and returns.

local The pointer which was previously returned from the EICanOpen function.

frame A pointer to a CanFrame structure. This structure holds the CAN frame to be
transmitted.

timeout The maximum amount of time to wait for a message to be added to the transmit
queue. Timeouts are specified in milliseconds.

Return An error code is returned on failure, or zero on success.

int EICanReadCardInfo(void *local, CanCardInfo *info);

This function can be used to retrieve some basic information about the CAN card.

local The pointer which was previously returned from the EICanOpen function.

info A pointer to a CanCardInfo structure. This structure will be filled in by the
function with information about the card.

Return An error code is returned on failure, or zero on success.

Structures

CanFrame

This structure represents a single message that can be transmitted on the CAN bus.

uint8_t type Identifies the type of the CAN frame. Type codes are defined in eican.h

CAN_FRAME_DATA A normal CAN data message.

CAN_FRAME_REMOTE A remote transmit request type CAN message.

CAN_FRAME_ERROR A special frame used by the card to return
information about CAN bus errors.

See the CanErrorInfo structure for details.

uint8_t length This field gives the number of bytes of data passed with the CAN message. It
can range from 0 to 8 bytes.

uint32_t id Every CAN message has an ID value associated with it. There are two types of
message IDs; standard 11-bit identifiers, and extended 29-bit identifiers.

This field uses bit 29 to distinguish between standard and extended CAN ID
values. When a standard CAN message is received, bits 0-10 of this field will
contain the ID and bits 11-31 will be zero. When an extended CAN message is
received, bits 0-28 will contain it's message ID and bit 29 will be set to identify
the message as an extended format message. Bits 30-31 will be zero.

uint32_t timestamp This field contains a timestamp (in microseconds) for each received CAN
message.

uint8_t data[8] This array contains the data associated with the CAN message. CAN messages
can have up to 8 bytes of data associated with them.

CanErrorInfo

This structure is used to pass error information from the card. The CanErrorInfo structure is the same
size as the CanFrame structure. When a CanFrame is passed from the card with a type code set to
CAN_FRAME_ERROR, the CanFrame structure should be casted to a structure of this type to better
identify the contents of the error.

uint8_t type Identifies the type of the CAN frame. For error information, this should always
be CAN_FRAME_ERROR.

uint8_t length This field gives the number of bytes of additional error information available in
the data array.

uint32_t mask This field contains a bit-mask identifying all the errors that are being reported
by this frame.

Bit Description

0 CAN bit stuffing error was detected on the bus. This means too
many consecutive ones or zeros were detected on the bus.

1 CAN form error. A frame was detected on the bus in which some
fixed bits were at the wrong level.

2 CAN CRC error. The CRC code of the CAN message was incorrect.
This is caused by corruption of the CAN message.

3 ACK error. This occurs when a message is transmitted an no other
node on the network acknowledges it.

4 Bit 0 error. A 0 bit was transmitted, but a 1 bit was received.

5 Bit 1 error. A 1 bit was transmitted, but a 0 bit was received.

15 Receiver overflow. A CAN message (or error message) could not be
added to the receive queue because it was full.

uint32_t timestamp This field contains a timestamp (in microseconds) of when the error occurred.

uint8_t data[8] This array contains additional information about the state of the card:

Byte Description

0 Transmit error counter. This counter increases with transmission
errors and decreases with successful transmissions.

1 Receive error counter. This counter increases with receive errors and
decreases with successful message receptions.

2-7 reserved

CanCardInfo
This structure is used to return some basic information about the CAN card.

uint32_t serial Card serial number

uint32_t hwType Card hardware type code

uint32_t fwVer Main firmware version. For example, version 1.02.03 would be formatted as
0x00010203.

uint32_t bootVer Boot loader version number.

uint32_t fpgaVer FPGA image version number.

uint32_t driverVer Driver version number.

Error codes

The following list of error codes are defined in the eican.h file.

#define Value Description

EICAN_ERR_OK 0 No error

EICAN_ERR_UNKNOWN_CMD 1 Passed command ID was unknown

EICAN_ERR_BAD_PARAM 2 Illegal parameter passed

EICAN_ERR_PORT_OPEN 3 Specified CAN port is already open

EICAN_ERR_PORT_CLOSED 4 Specified CAN port is not open

EICAN_ERR_CARD_BUSY 5 Card command area is busy

EICAN_ERR_INTERNAL 6 Some sort of internal device failure

EICAN_ERR_TIMEOUT 7 Card failed to respond to command

EICAN_ERR_SIGNAL 8 Signal received by driver

EICAN_ERR_MISSING_DATA 9 Not enough data was passed

EICAN_ERR_CMDMUTEX_HELD 10 The command mutex was being held

EICAN_ERR_QUEUECTRL 11 The CAN message queue head/tail was invalid

EICAN_ERR_FLASH 12 Failed to erase/program flash memory

EICAN_ERR_NOTERASED 13 Attempt to write firmware before erasing flash

EICAN_ERR_FLASHFULL 14 Too much data sent when programming flash

EICAN_ERR_UNKNOWN_IOCTL 15 Specified IOCTL code was unknown

EICAN_ERR_CMD_TOO_SMALL 16 Command passed without required header

#define Value Description

EICAN_ERR_CMD_TOO_BIG 17 Command passed with too much data

EICAN_ERR_CMD_IN_PROGRESS 18 Command already in progress on card

EICAN_ERR_CAN_DATA_LENGTH 19 More then 8 bytes of data sent with CAN message

EICAN_ERR_QUEUE_FULL 20 Transmit queue is full

EICAN_ERR_QUEUE_EMPTY 21 Receive queue is full

EICAN_ERR_READ_ONLY 22 Parameter is read only

EICAN_ERR_MEMORYTEST 23 Memory read/write test failure

EICAN_ERR_ALLOC 24 Memory allocation failure

EICAN_ERR_CMDFINISHED 25 Used internally by driver

EICAN_ERR_DRIVER 26 Generic device driver error

EICAN_ERR_CANT_OPEN_PORT 256 Unable to obtain handle to device driver

C++ language

The C++ language API is very similar to the C language API. The main difference is that the C
language functions have been replaced by methods to a main class (EIcan) representing the CAN card
port.

Class Methods

EIcan::EIcan(void);

The default constructor for the EIcan class. This simply initializes the classes internal data structures.
The Eican::Open function needs to be called before the class can be used.

Eican::~EIcan();

The class destructor closes the port if it was open at the time that the object was destroyed.

int EIcan::Open(int port, int baud);

This method is used to open the CAN port. Before any other calls can be made which access this
object, it must be successfully opened using this method.

port This parameter identifies the CAN port to open. CAN card ports are numbered
from 0, so systems with a single dual channel card would have CAN ports
numbered 0 and 1.

baud The bit rate at which to communicate on the CAN port. The value passed should
be one of the #defined values in the eican header file. Options are:

EICAN_BITRATE_1000000 1 Megabit / second

EICAN_BITRATE_800000 500 Kbits / second

EICAN_BITRATE_500000 250 Kbits / second

EICAN_BITRATE_250000 250 Kbits / second

EICAN_BITRATE_125000 120 Kbits / second

EICAN_BITRATE_100000 100 Kbits / second

EICAN_BITRATE_50000 50 Kbits / second

EICAN_BITRATE_20000 20 Kbits / second

Return An error code is returned on any error, or zero on success.

int EIcan::Close(void);

This method is used to close a CAN port when it is no longer needed. After closing the port, no further
calls can be made which access that port unless it is opened again through another call to
Eican::Open.

Return An error code is returned on failure, or zero on success.

int EIcan::Recv(CanFrame *frame, int32_t timeout);

Wait for a new message to be received on the open CAN port and return it.

frame A pointer to a CanFrame structure. If this function returns success, the received
CAN frame will be stored in the structure referenced by this pointer.

timeout The maximum amount of time to wait for a message before returning an error.
The timeout is specified in millisecond units.

Return An error code is returned on failure, or zero on success.

int EIcan::Xmit(CanFrame *frame, int32_t timeout);

Transmit a CAN message over the open CAN port. This function adds the passed message to the cards
transmit queue and returns.

frame A pointer to a CanFrame structure. This structure holds the CAN frame to be
transmitted.

timeout The maximum amount of time to wait for a message to be added to the transmit
queue. Timeouts are specified in milliseconds.

Return An error code is returned on failure, or zero on success.

int EIcan::ReadCardInfo(CanCardInfo *info);

This method can be used to retrieve some basic information about the CAN card.

info A pointer to a CanCardInfo structure. This structure will be filled in by the
function with information about the card.

Return An error code is returned on failure, or zero on success.

	Compliance information
	FCC Compliance
	EN 55022 Class A Warning
	CE declaration of conformity
	Safety note

	Hardware description and installation
	CAN connector pinout

	Driver Installation
	Windows
	Linux

	CAN bus wiring
	Development libraries
	C language
	Functions
	Structures
	Error codes

	C++ language
	Class Methods

